
Limiting Distortion of a Wavelet Image Codec

Joonas Lehtinen ∗

Acta Cybernetica 14 (1999) 341-356

Abstract

A new image compression algorithm, Distortion Limited Wavelet Image
Codec (DLWIC), is introduced. The codec is designed to be simple to im-
plement, fast and have modest requirements for the working storage. It is
shown, how the distortion of the result can be calculated while progressively
coding a transformed image and thus how the mean square error of the result
can be limited to a predefined value. The DLWIC uses zerotrees for efficient
coding of the wavelet coefficients. Correlations between different orientation
components are also taken into account by binding together the coefficients
on the three different orientation components in the same spatial location.
The maximum numbers of significant bits in the coefficients of all subtrees
are stored in two-dimensional heap structure that allows the coder to test the
zerotree property of a subtree with only one comparison. The compression
performance of the DLWIC is compared to the industry standard JPEG com-
pression and to an advanced wavelet image compression algorithm, vqSPIHT.
An estimation of execution speed and memory requirements for the algorithm
is given. The compression performance of the algorithm seems to exceed the
performance of the JPEG and to be comparable with the vqSPIHT.

1 Introduction

In some digital image archiving and transferring applications, especially in medi-
cal imaging, the quality of images must meet predefined constrains. The quality
must be often guaranteed by using a lossless image compression technique. This
is somewhat problematic, because the compression performance of the best known
lossless image compression algorithms is fairly modest; the compression ratio ranges
typically from 1:2 to 1:4 for medical images [5].

Lossy compression techniques generally offer much higher compression ratios
than lossless ones, but this is achieved by losing details and thus decreasing the
quality of the reconstructed image. Compression performance and also the amount
of distortion are usually controlled with some parameters which are not directly
connected to image quality, defined by mean square error [1] (MSE). If a lossy
technique is used, the quality constrains can be often met by overestimating the
control parameters, which results worse compression performance.

∗Turku Centre for Computer Science, University of Turku, Lemminkäisenkatu 14 A, 20520
Turku, Finland, email: jole@jole.fi, WWW: http://jole.fi/

341

342 Joonas Lehtinen

In this paper a new lossy image compression technique called Distortion Limited
Wavelet Image Codec (DLWIC) is presented. The DLWIC is related to embedded
zerotree wavelet coding (EZW) [9] technique introduced by J.M. Shapiro in 1993.
Also some ideas from SPIHT [8] and vqSPIHT [3] have been used. DLWIC solves
the problem of distortion limiting (DL) by allowing the user of the algorithm to
specify the MSE of the decompressed image as controlling parameter for the com-
pression algorithm.

The algorithm is designed to be as simple as possible, which is achieved by bind-
ing together the orientation bands of the octave band composition and coding the
zerotree structures and wavelet coefficient bits in the same pass. A special auxiliary
data structure called two dimensional heap is introduced to make the zerotree cod-
ing simple and fast. The DLWIC uses only little extra memory in the compression
and is thus suitable for compression of very large images. The technique also seems
to provide competitive compression performance in comparison with the vqSPIHT.

In the DLWIC, the image to be compressed is first converted to the wavelet
domain with the orthonormal Daubechies wavelet transform [10]. The transformed
data is then coded by bit-levels using a scanning algorithm presented in this paper.
The output of the scanning algorithm is coded using QM-coder [7], an advanced
binary arithmetic coder.

The scanning algorithm processes the bits of the wavelet transformed image
data in decreasing order of their significance in terms of MSE, as in the EZW. This
produces progressive output stream: the algorithm can be stopped at any phase of
the coding and the already coded output can be used to construct an approximation
of the original image. This feature can be used when a user browses images using
slow connection to the image archive: The image can be viewed immediately after
only few bits have been received; the subsequent bits then make it more accurate.
The DLWIC uses the progressivity by stopping the coding when the quality of
the reconstruction exceeds threshold given as a parameter to the algorithm. The
coding can also be stopped when the size of the coded output exceeds a given
threshold. This way both the MSE and bits per pixel (BPP) value of the output
can be accurately controlled.

After the introduction, the structure of the DLWIC is explained. A quick
overview of the octave band composition is given and it is shown with an example
how the wavelet coefficients are connected to each other in different parts of the
coefficient matrix.

Some general ideas of the bit-level coding are then explained (2.3) and it is
shown how the unknown bits should be approximated in the decoder. The meaning
of zerotrees in DLWIC is then discussed (2.4). After that an auxiliary data structure
called two dimensional heap is introduced (2.5). The scanning algorithm is given
as pseudo code (2.6).

The distortion limiting feature is introduced and the stopping of the algorithm
on certain stopping conditions is discussed (2.7). Finally we show how separate
probability distributions are allocated for coding the bits with the QM-coder in
different contexts (2.8).

The algorithm is tested with a set of images and the compression performance

Limiting Distortion of a Wavelet Image Codec 343

Spatial
image
data

Wavelet
domain
image
data

Binary scanning
decisions and

bits of the
coefficients

Compressed
image

Wavelet transform
Scanning

Statistical coding

Statistical decoding

Scanning using
precalculated decisions

Inverse wavelet transform

Compression

Decompression

Figure 1: The structure of the DLWIC compression algorithm

is compared to the JPEG and the vqSPIHT compression algorithms (3). Variations
in the quality achieved by the constant quantization in the JPEG is demonstrated
with an example. Also an estimation of the speed and memory usage is given (3.2).

2 DLWIC algorithm

2.1 Structure of the DLWIC and the wavelet transform

The DLWIC algorithm consists of three steps (Figure 1): 1) the wavelet transform,
2) scanning the wavelet coefficients by bit-levels and 3) coding the binary decisions
made by the scanning algorithm and the bits of the coefficients with the statistical
coder. The decoding algorithm is almost identical: 1) binary decisions and coeffi-
cient bits are decoded, 2) the coefficient data is generated using the same scanning
algorithm as in the coding phase, but using the previously coded decision infor-
mation, 3) the coefficient matrix is converted to a spatial image with the inverse
wavelet transform.

The original spatial domain picture is transformed to the wavelet domain using
Daubechies wavelet transform [10]. The transform is applied recursively to the
rows and columns of the matrix representing the original spatial domain image.
This operation gives us an octave band composition (Figure 2). The left side (B)
of the resulting coefficient matrix contains horizontal components of the spatial
domain image, the vertical components of the image are on the top (A) and the
diagonal components are along the diagonal axis (C). Each orientation pyramid
is divided to levels, for example the horizontal orientation pyramid (B) consists
of three levels (B0, B1 and B2). Each level contains details of different size; the
lowest level (B0), for example, contains the smallest horizontal details of the spatial
image. The three orientation pyramids have one shared top level (S), which contains

344 Joonas Lehtinen

A0

A1
A2

C0

C1

C2

B0

B1

B2

S

Figure 2: Octave band composition produced by recursive wavelet transform is
illustrated on the left and the pyramid structure inside the coefficient matrix is
shown on the right.

scaling coefficients of the image, representing essentially the average intensity of the
corresponding region in the image. Usually the coefficients in the wavelet transform
of a natural image are small on the lower levels and bigger on the upper levels
(Figure 3). This property is very important for the compression: the coefficients of
this highly skewed distribution can be coded using fewer bits.

2.2 Connection between orientation pyramids

Each level in the coefficient matrix represents certain property of the spatial domain
image in its different locations. Structures in the natural image contain almost
always both big and small details. In the coefficient matrix this means that if
some coefficient is small, it is most likely that also the coefficients, representing
smaller features of the same spatial location, are small. This can be seen in Figure
3: different levels of the same coefficient pyramid look similar, but are in different
scales. The EZW takes advantage of this by scanning the image in depth first order,
i.e. it scans all the coefficients related to one spatial location in one orientation
pyramid before moving to another location. This way it can code a group of small
coefficients together, and thus achieves better compression performance.

In natural image, most of the features are not strictly horizontal or vertical,
but contain both components. The DLWIC takes advantage of this by binding
also all three orientation pyramids together : The scanning is done only for the
horizontal orientation pyramid (B), but bits of all three coefficients, representing the
three orientations of the same location and scale, are coded together. Surprisingly
this only slightly enhances the compression performance. The feature is however
included in the DLWIC because of its advantages: it simplifies the scanning, makes
the implementation faster and reduces the size of auxiliary data structures.

Limiting Distortion of a Wavelet Image Codec 345

Figure 3: An example of the Daubechies wavelet transform. The original 512×512
sized picture is on the left and its transform is presented with absolute values of
the coefficients in logarithmic scale on the right.

2.3 Bit-level coding

The coefficient matrix of size W × H is scanned by bit-levels beginning from the
highest bit-level nmax required for coding the biggest coefficient in the matrix (i.e.
the number of the significant bits in the biggest coefficient):

nmax = blog2(max{(|ci,j |)|0 ≤ i < W ∧ 0 ≤ j < H}) + 1c, (1)

where the coefficient in (i, j) is marked with ci,j . The coefficients are represented
using positive integers and the sign bits that are stored separately. The coder first
codes all the bits on the bit-level nmax of all the coefficients, then all the bits on
bit-level nmax − 1 and so on until the least significant bit-level 1 is reached or the
scanning algorithm is stopped (Section 2.7). The sign is coded together with the
most significant bit (the first 1-bit) of a coefficient. For example three coefficients
c0,0 = −1910 = −100112, c1,0 = 910 = 010012, c2,0 = −210 = −000102 would be
coded as

1100︸︷︷︸
5

0100︸︷︷︸
4

000︸︷︷︸
3

1011︸︷︷︸
2

110︸︷︷︸
1

, (2)

where the corresponding bit-level numbers are marked under the bits coded on that
level (without signs it would be 100︸︷︷︸

5

010︸︷︷︸
4

000︸︷︷︸
3

101︸︷︷︸
2

110︸︷︷︸
1

).

Because of the progressivity, the code stream can be truncated at any position
and the decoder can approximate the coefficient matrix using received information.
The easiest way of approximating the unknown bits in the coefficient matrix would
be to fill them with zeroes. In the DLWIC algorithm a more accurate estimation is

346 Joonas Lehtinen

used, the first unknown bit of each coefficient, for which the sign is known, is filled
with one and the rest bits are filled with zeroes. For example, if the first seven bits
of the bit-stream (2) have been received, the coefficients would be approximated:
c0,0 = −2010 = −101002, c1,0 = 1210 = 011002, c2,0 = 010 = 000002.

2.4 Zerotrees in DLWIC

A bit-level is scanned by first coding a bit of a scaling coefficient (on the level S in
the Figure 2). Then recursively the three bits of the coefficients in the same spatial
location on the next level of the orientation pyramids (A2,B2,C2) are coded. The
scanning continues to the next scaling coefficient, after all the coefficients in the
previous spatial location in all the pyramid levels has been scanned.

We will define that a coefficient c is insignificant on a bit-level n, if and only if
|c| < 2n−1. Because the coefficients on the lower pyramid levels tend to be smaller
than on the higher levels and different sized details are often spatially clustered,
probability for a coefficient for being insignificant is high, if the coefficient on the
higher level in the same spatial location is insignificant.

If an insignificant coefficient is found in the scanning, the compression algorithm
will check if any of the coefficients below the insignificant one is significant. If no
significant coefficients are found, all the bits in those coefficients on current bit-
level are zeroes and thus can be coded with only one bit. This structure is called
zerotree.

One difference to the EZW algorithm is that the DLWIC scans all the orienta-
tions simultaneously and thus constructs only one shared zerotree for the all the
orientation pyramids. Also the significance information is coded at the same pass
as the significant bits in the coefficients, whereas the EZW and SPIHT algorithms
use separate passes for the significance information.

2.5 Two dimensional significance heap

It is a slow operation to perform a significance check for all the coefficients on a
specific spatial location on all the pyramid levels. The DLWIC algorithm uses a
new auxiliary data-structure, which we call two dimensional significance heap, to
eliminate the slow significance checks.

The heap is a two dimensional data-structure of the same size (number of ele-
ments) and shape as the horizontal orientation pyramid in the coefficient matrix.
Each element in the heap defines the number of bits needed to represent the largest
coefficient in any orientation pyramid in the same location on the same level or
below it. Thus the scanning algorithm can find out, whether there is a zerotree
starting from a particular coefficient on a certain bit-level by comparing the num-
ber of the bit-level to the corresponding value in the heap.

Here and in the rest of this paper we denote the height of the coefficient matrix
with H, the width with W and the number of levels in the pyramid excluding the
scaling coefficient level (S) with L. Thus the dimensions of the scaling coefficient
level are: Hs = H/2L and Ws = W/2L. Furthermore the dimensions of the level

Limiting Distortion of a Wavelet Image Codec 347

in the two-dimensional heap, where (x, y) resides are

Wx,y = Ws2blog2(max{1, y
Hs

})c

Hx,y = Hs2blog2(max{1, y
Hs

})c (3)

Now the heap elements hx,y can be defined with the functions ht(x, y), hc(x, y) and
hs(x, y):

ht(x, y) = max{hx,y+Hs
, blog2(|cx,y|)c+ 1}

hc(x, y) = max{h2x,2y, h2x+1,2y, h2x,2y+1, h2x+1,2y+1}
hs(x, y) = blog2(max{|cx,y|, |cx+Wx,y,y|, |cx+Wx,y,y−Hx,y |})c+ 1

hx,y =

 ht(x, y), if x < Ws ∧ y < Hs

hs(x, y), if x ≥W/2 ∧ y ≥ H/2
max{hs(x, y), hc(x, y)}, otherwise,

.

(4)

Note that the definitions (3) and (4) are only valid for the elements in the heap,
where 0 ≤ y < H and 0 ≤ x < Ws2blog2(max{1, y

Hs
})c. While the definition of

the heap looks complex, we can construct the heap with a very simple and fast
algorithm (Alg. 1).

2.6 Coding algorithm

The skeleton of the compression algorithm (Alg. 2) is straightforward: 1) the spatial
domain image is transformed to wavelet domain by constructing the octave band
composition, 2) the two dimensional heap is constructed (Alg. 1), 3) the QM-coder
is initialized, 4) the coefficient matrix is scanned in bit-levels by executing scanning
algorithm (Alg. 3) for each top level coefficient on each bit-level.

The decoding algorithm is similar. First an empty two dimensional heap is
created by filling it with zeroes. Then the QM-decoder is initialized and the same
scanning algorithm is executed in such way that instead of calculating the decisions,
it extracts the decision information from the coded data.

The scanning algorithm (Alg. 3) is the core of the compression scheme. It tries
to minimize correlations between the saved bits by coding as many bits as possible
with zerotrees. In the pseudo-code, Bit(x,n) returns n:th bit of the absolute value
of x and si,j denotes the sign of the coefficient in the matrix element (i, j). Bits
are coded with function QMCode(b,context), where b is the bit to be coded and
context is the context used as explained in Section 2.8. Context can be either a
constant or some function of variables known to both the coder and decoder. In
both cases, the value of the context is not important, but it should be unique for
each combination of parameters. Stopping of the algorithm is queried with func-
tion ContinueCoding(), which returns true, if the coding should be continued. In
order to calculate the stopping condition, the quality of the approximated result-
ing image must be calculated while coding. This is achieved by calling function
DLUpdate(n,x) every time after coding n:th bit of the coefficient x. Both calcula-
tions are explained in the Section 2.7. The dimensions of the matrix and its levels
are noted in the same way as in the Section 2.5.

348 Joonas Lehtinen

The scanning algorithm first checks the stopping condition. Then we check from
the two dimensional heap, whether there is a zerotree starting from this location,
and code the result. If the coefficient had become significant earlier, the decoder
knows also that and thus we can omit the coding of the result. If we are coding
a scaling coefficient (l = 0), we only process that coefficient and then recursively
scan the coefficient in the same location on the next level below this one. If we
are coding a coefficient below the top-level, we must process all three coefficients
in three orientation pyramids in this spatial location and then recursively scan all
four coefficients on the next level, if that level exists.

When a coefficient is processed using ScanCoeff algorithm (Alg. 4), we first
check, whether it had become significant earlier. If that is the case, we just code the
bit on the current bit-level and then do the distortion calculation. If the coefficient
is smaller than 2n, we code the bit on the current bit-level, and also check whether
that was the first 1-bit of the coefficient. If that is true, we also code the sign of
the coefficient and do the distortion calculation.

2.7 Stopping condition and distortion limiting

The DLWIC continues coding until some of the following conditions occur: 1) All
the bits of the coefficient matrix have been coded, 2) The number of bits produced
by the QM-coder reach a user specified threshold, or 3) the distortion of the output
image, that can be constructed from sent data, decreases below the user specified
threshold. The binary stopping decisions made before coding each bit of a coefficient
are coded, as the decoder must exactly know when to stop decoding.

The first condition is trivial, as the main loop (Alg. 2) ends when all the bits
have been coded. The second condition is also easy to implement: output routine
of the QM-coder can easily count the number of bits or bytes produced. To check
the third condition, the algorithm must know the MSE of the decompressed image.
The MSE of the decompressed image could be calculated by doing inverse wavelet
transform for the whole coefficient matrix and then calculating the MSE from the
result. Unfortunately this would be extremely slow, because the algorithm must
check the stopping condition very often.

The reason for using Daubechies wavelet transform is its orthonormality. For
orthonormal transforms, the square sums of the pixel values of the image before
and after the transform are equal:∑

i,j

(xi,j)2 =
∑
i,j

(ci,j)2 (5)

where xi,j stands for the spatial domain image intensity and ci,j is the wavelet
coefficient. Furthermore, the mean square error between the original image and
some approximation of it can be calculated equally in the wavelet and spatial
domains. Thus we do not have to do the inverse wavelet transform to calculate the
MSE.

Instead of tracking the MSE, we track the current square error, cse, of the
approximated image because it is computationally easier. The initial approximation

Limiting Distortion of a Wavelet Image Codec 349

of the image is zero coefficient matrix, as we have to approximate the coefficients
to be zero, when we do not know their signs. Thus the initial cse equals to the
energy of the coefficient matrix.

cse←
∑
i,j

(ci,j)2 (6)

After sending each bit of a coefficient c, we must update cse by subtracting the
error produced by the previous approximation of c and adding the error of its new
approximation. The error of an approximation of c depends only on the level of
the last known bit and the coefficient c itself. If we code the n:th bit of c, then the
cse should be updated:

cse← cse−

[
(|c|AND2(2n − 1))− 2n−1

]2−[
(|c|AND2(2n−1 − 1))− 2n−2

]2 ifblog2 cc > n− 1

c2 − (2(n−1) + 2(n−2) − c)2 ifblog2 cc = n− 1
0 ifblog2 cc < n− 1,

(7)

where AND2 is bitwise and-operation. The first case defines the error reduced by
finding out one bit of a coefficient, when the sign is already known. The second
case defines the error reduced by finding out the sign of a coefficient and the last
case states that cse does not change if only zero bit before the coefficients first one
bit is found. The equation 7 holds only, when n > 1.

2.8 The use of contexts in QM-coder

The QM-coder is a binary arithmetic coding algorithm that tries to code binary
data following some probability distribution as efficiently as possible. Theoretically
an arithmetic coder compresses data according to its entropy [4], but the QM-
coder uses a dynamical probability estimation technique [6, 7, 2] based on state
automata, and its compression performance can even exceed the entropy, if the
local probability distribution differs from the global distribution used in the entropy
calculation.

The DLWIC codes different types of information with differing probability dis-
tributions. For example the signs of coefficients are highly random, that is the
probability of plus sign is approximately 0.5, but the probability of finding the
stopping condition is only 1/N , where N is the number of stopping condition eval-
uations. If bits following the both distributions would be coded using the same
probability distribution, the compression performance obviously would not be ac-
ceptable.

To achieve better compression performance the DLWIC uses separate contexts
for binary data following different probability distributions. The contexts for cod-
ing the following type of data are defined: 1) signs, 2) stopping conditions, 3) the
bits of the coefficients after the first one bit, 4) the bits of the scaling coefficients,
5) zerotrees on the different levels of the pyramid, 6) the significance check of the

350 Joonas Lehtinen

Figure 4: Test images from top left: 1) barb (512 × 512), 2) bird (256 × 256), 3)
boat (512×512), 4) bridge (256×256), 5) camera (256×256), 6) circles (256×256),
7) crosses (256× 256), 8) france (672× 496) and 9) frog (621× 498).

insignificant coefficients on different pyramid levels on different orientation pyra-
mids. The number of separate contexts is 4 ∗ (l + 1), where l defines the number
of levels in the pyramids. It would also be possible to define different contexts for
each bit-level, but dynamical probability estimation in the QM-coder seems to be
so efficient that this is not necessary.

3 Test results

The performance of the DLWIC algorithm is compared to the JPEG and the
vqSPIHT [3] algorithms with a set (Fig. 4) of 8 bit grayscale test images. The
vqSPIHT is an efficient implementation of the SPIHT [8] compression algorithm.
The vqSPIHT algorithm uses the biorthogonal B97 wavelet transform [10], the QM-
coder and a more complicated image scanning algorithm than the DLWIC. Image
quality is measured in terms of peak signal to noise ratio [1] (PSNR), which is an
inverse logarithmic measure calculated from MSE.

3.1 Compression efficiency

To compare the compression performance of the algorithms, the test image set is
compressed with different BPP-rates from 0.1 to 3.0 and the PSNR is calculated
as the mean for all the images. Because it is not possible to specify BPP as a
parameter for JPEG compression algorithm, various quantization parameters are
used and the BPP value is calculated as a mean value of the image set for each
quantization value.

As can be seen in the Figure 5, the performance of the vqSPIHT and the DLWIC
algorithms is highly similar. This is somewhat surprising, because of the greater
complexity and better wavelet transform used in the vqSPIHT. The quality of the
images compressed with the EZW variants seem to exceed the quality produced by

Limiting Distortion of a Wavelet Image Codec 351

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3

P
S

N
R

(d
B

)

BPP

DLWIC
vqSPIHT

JPEG

Figure 5: Compression performance comparison of DLWIC, vqSPIHT and JPEG.
The PSNR-values correspond to mean value obtained from test image set (Fig. 4).

the JPEG. This is especially true when low bit-rates are used. Poor scalability of
the JPEG to low BPP values is probably implied by the fixed block size used in
the DCT transform of the JPEG as opposed to multi-resolution approach of the
wavelet based methods.

One might expect that a conventional image compression algorithm such as the
JPEG would give similar PSNR and BPP values for similar images when fixed
quantization parameter is used. This is not the case as demonstrated in the Figure
6, where all the test images are compressed using the same quantization parameter
(20) with the standard JPEG.

3.2 Speed and memory usage

The speed of the implementation is not compared to other techniques, because the
implementation of the algorithm is not highly optimized. Instead an example of
the time consumption of the different components of the compression process is ex-
amined using the GNU profiler. The frog test image is compressed using a 400MHz
Intel Pentium II workstation running Linux and the algorithm is implemented in
C language and compiled with GNU C 2.7.2.1 using “-O4 -p” options. The cumu-
lative CPU time used in the different parts of the algorithm is shown in the Figure
7.

When the image is compressed with a low BPP-rate, most of the time is con-
sumed by the wavelet transform. When the BPP-rate increases, the time used by
the QM-coder, the scanning algorithm and the distortion calculations increases in

352 Joonas Lehtinen

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 2 4 6 8 10

B
P

P

Image #

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 2 4 6 8 10

P
S

N
R

Image #

Figure 6: All the images of the test image set are compressed by JPEG with the
same quantization value (20), and the BPP (left) and the PSNR (right) of the
resulting images are shown.

somewhat linear manner. Construction of the two dimensional heap seems to be
quite fast operation and distortion limiting is not very time consuming.

If we want to optimize the implementation of the DLWIC, the biggest problem
would probably be the extensive use of the QM-coder, that is already highly opti-
mized. One way to alleviate the problem would be to store the stopping condition is
some other way than compressing the binary decision after each bit received. Also
the transform would have to be optimized to achieve faster compression, because
it consumes nearly half of the processing time, when higher compression ratios are
used.

Probably the biggest advantage of the DLWIC over the SPIHT and even the
vqSPIHT is its low auxiliary memory usage. The only auxiliary data-structure
used, the two dimensional heap, can be represented using 8-bit integers and thus
only consumes approximately 8 ∗ N/3 bits of memory, where N is the number of
coefficients. If the coefficients are stored with 32-bit integers, this implies 8% auxil-
iary memory overhead, which is very reasonable, when compared to 32% overhead
in the vqSPIHT or even much higher overhead in the SPIHT algorithm, which
depends on the target BPP-rate.

4 Summary and conclusion

In this paper a new general purpose wavelet image compression scheme, DLWIC,
was introduced. Also it was shown how the distortion of the resulting decompressed
image can be calculated while compressing the image and thus how the distortion
of the compressed image can be limited. The scanning algorithm in the DLWIC is
very simple and it was shown, how it can be efficiently implemented using a two
dimensional heap structure.

Compression performance of the DLWIC was tested with a set of images and the
compression performance seems to be promising, when compared to a more complex

Limiting Distortion of a Wavelet Image Codec 353

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5 2 2.5 3 3.5 4

TI
M

E(
se

c)

BPP

Misc
DL

2D Heap
Transform
Scanning

QM-Coder

Figure 7: Running time of the different components in the DLWIC compres-
sion/decompression algorithm, when compressing the frog test image (Fig. 4).
Graph shows the cumulative CPU time consumption when different BPP-rates are
used.

compression algorithm, the vqSPIHT. Furthermore, the compression performance
easily exceeds the performance of the JPEG, especially when high compression
ratios are used.

Further research for extending the DLWIC algorithm to be used in lossless or
nearly lossless multidimensional medical image compression is planned. Also the
implementation of the DLWIC will be optimized and usage of some other wavelet
transforms will be considered.

References
[1] R. Gonzalez and R. Woods. Digital Image Processing. Addison-Wesley Publishing Company,

1992.

[2] ITU-T. Progressive bi-level image compression, recommendation t.82. Technical report,
International telecommunication union, 1993.

[3] A. Järvi, J. Lehtinen, and O. Nevalainen. Variable quality image compression system based
on SPIHT. to appear in Signal Processing: Image Communications, 1998.

[4] Sayhood K. Introduction to Data Compression. Morgan Kaufmann, 1996.

[5] Juha Kivijrvi, Tiina Ojala, Timo Kaukoranta, Attila Kuba, László Nyúl, and Olli Nevalainen.
The comparison of lossless compression methods in the case of a medical image database.
Technical Report 171, Turku Centre for Computer Science, April 1998.

[6] W.B. Pennebaker and J.L. Mitchell. Probability estimation for the q-coder. IBM Journal of
Research and Development, 32(6):737–752, 1988.

354 Joonas Lehtinen

[7] William Pennebaker and Joan Mitchell. Jpeg : Still Image Data Compression Standard. Van
Nostrand Reinhold, 1992.

[8] Amir Said and William A. Pearlman. A new fast and efficient image codec based on set
partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video
Technology, 6:243–250, June 1996.

[9] J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans.
Signal Processing, 31(12), December 1993.

[10] M. Vettereli and J. Kovačević. Wavelets and Subband Coding. Prentice Hall, Englewood
Cliffs, NJ, 1995.

Limiting Distortion of a Wavelet Image Codec 355

Algorithm 1 Construct2DHeap
for l← 1 to L + 1 do

Ht ← H/2min{l,L}, Wt ←W/2min{l,L}

for j ← 0 to Ht − 1 do
for i← 0 to Wt − 1 do

if l = 1 then
t← 0
u← b1 + log2(max{|ci,j+H |, |ci+W,j |, |ci+W,j+H |})c

else if l ≤ L then
t← max{h2x,2y, h2x+1,2y, h2x,2y+1, h2x+1,2y+1}
u← b1 + log2(max{|ci,j+H |, |ci+W,j |, |ci+W,j+H |})c

else
t← max{hi,j+Hs

, hi+Ws,j , hi+Ws,j+Hs
}

u← b1 + log2(max{(|ci,j |)|0 ≤ i < W ∧ 0 ≤ j < H})c
hi,j ← max{t, u}

Algorithm 2 CompressDLWIC
Transform the spatial image with Daubechies wavelet transform constructing the
octave band composition where the coefficients ci,j are represented with positive
integers and separate sign bit.
Construct the two dimensional heap (Alg. 1).
Initialize QM-coder
Calculate initial distortion of the image (Section 2.7).
nmax ← max{hi,j |0 ≤ i < Ws ∧ 0 ≤ j < Hs}
for n← nmax to 1 do

for j ← 0 to Hs − 1 do
for i← 0 to Ws − 1 do

Scan(i, j, 0, n) (Alg. 3)

356 Joonas Lehtinen

Algorithm 3 Scan(i, j, l, n)
if ContinueCoding() then

if hi,j < n then
QMCode(insignificant, significance-test(l))

else
if hi,j = n then

QMCode(significant, significance-test(l))
if l = 0 then

ScanCoeff(i, j,toplevel, n)
Scan(i, j + Hs, 1, n)

else

ScanCoeff(i, j,horizontal

(
l, c(i+Wi,j),j < 2n,
c(i+Wi,j),(j−Hi,j) < 2n

)
, n)

ScanCoeff(i + Wi,j , j,diagonal

(
l, ci,j < 2n−1,
c(i+Wi,j),(j−Hi,j) < 2n

)
, n)

ScanCoeff(i + Wi,j , j −Hi,j ,vertical

(
l, ci,j < 2n−1,
c(i+Wi,j),j < 2n−1

)
, n)

if 2 ∗ y < H then
Scan(2 ∗ i, 2 ∗ j, l + 1, n)
Scan(2 ∗ i + 1, 2 ∗ j, l + 1, n)
Scan(2 ∗ i, 2 ∗ j + 1, l + 1, n)
Scan(2 ∗ i + 1, 2 ∗ j + 1q, l + 1, n)

Algorithm 4 ScanCoeff(x, y,context, n)
if cx,y < 2n then

QMCode(Bit(cx,y, n),context)
if Bit(cx,y, n)= 1 then

QMCode(sx,y,sign)
DLUpdate(n, cx,y)

else
QMCode(Bit(cx,y, n),coefficientbit)
DLUpdate(n, cx,y)

